A lack-of-fit test for quantile regression models with high-dimensional covariates

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Quantile Regression with High-dimensional Covariates.

This paper is concerned with quantile regression for a semiparametric regression model, in which both the conditional mean and conditional variance function of the response given the covariates admit a single-index structure. This semiparametric regression model enables us to reduce the dimension of the covariates and simultaneously retains the flexibility of nonparametric regression. Under mil...

متن کامل

Nonparametric Test for Checking Lack-of-Fit of Quantile Regression Model under Random Censoring

Recently, considerable attention has been devoted to quantile regression under random censoring in both statistical and econometrical literature yet little has been done on the important problem of model checking. This paper proposes a nonparametric test for checking the lack-of-fit of the quantile function of the survival time given the covariates when the survival time is subjected to random ...

متن کامل

High-Dimensional Structured Quantile Regression

Quantile regression aims at modeling the conditional median and quantiles of a response variable given certain predictor variables. In this work we consider the problem of linear quantile regression in high dimensions where the number of predictor variables is much higher than the number of samples available for parameter estimation. We assume the true parameter to have some structure character...

متن کامل

1-Penalised quantile regression in high- dimensional sparse models

We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of the response variable, where s grows slower than n. Since in this case the ordinary quantile regressio...

متن کامل

Penalized Quantile Regression in Sparse High-dimensional Models

This paper studies high-dimensional parametric quantile regression models, where the dimension of the model increases with the sample size. we focus on the highdimensional low sample size (HDLSS) setting where the number of covariates is allowed to be larger than the sample size. The underlying assumption of the model that allows for a meaningful estimation is the sparseness of the true model. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics & Data Analysis

سال: 2015

ISSN: 0167-9473

DOI: 10.1016/j.csda.2015.02.016